Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans.

نویسندگان

  • Andreas Bernreiter
  • Ana Ramon
  • Javier Fernández-Martínez
  • Harald Berger
  • Lidia Araújo-Bazan
  • Eduardo A Espeso
  • Robert Pachlinger
  • Andreas Gallmetzer
  • Ingund Anderl
  • Claudio Scazzocchio
  • Joseph Strauss
چکیده

NirA, the specific transcription factor of the nitrate assimilation pathway of Aspergillus nidulans, accumulates in the nucleus upon induction by nitrate. NirA interacts with the nuclear export factor KapK, which bridges an interaction with a protein of the nucleoporin-like family (NplA). Nitrate induction disrupts the NirA-KapK interaction in vivo, whereas KapK associates with NirA when this protein is exported from the nucleus. A KpaK leptomycin-sensitive mutation leads to inducer-independent NirA nuclear accumulation in the presence of the drug. However, this does not lead to constitutive expression of the genes controlled by NirA. A nirA(c)1 mutation leads to constitutive nuclear localization and activity, remodeling of chromatin, and in vivo binding to a NirA upstream activation sequence. The nirA(c)1 mutation maps in the nuclear export signal (NES) of the NirA protein. The NirA-KapK interaction is nearly abolished in NirA(c)1 and NirA proteins mutated in canonical leucine residues in the NirA NES. The latter do not result in constitutively active NirA protein, which implies that nuclear retention is necessary but not sufficient for NirA activity. The results are consistent with a model in which activation of NirA by nitrate disrupts the interaction of NirA with the NplA/KapK nuclear export complex, thus resulting in nuclear retention, leading to AreA-facilitated DNA binding of the NirA protein and subsequent chromatin remodeling and transcriptional activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA

The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional...

متن کامل

Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans.

In Aspergillus nidulans, the genes coding for nitrate reductase (niaD) and nitrite reductase (niiA), are transcribed divergently from a common promoter region of 1200 basepairs. We have previously characterized the relevant cis-acting elements for the two synergistically acting transcriptional activators NirA and AreA. We have further shown that AreA is constitutively bound to a central cluster...

متن کامل

Nitrate Assimilation in Fusarium fujikuroi Is Controlled by Multiple Levels of Regulation

Secondary metabolite production of the phytopathogenic ascomycete fungus Fusarium fujikuroi is greatly influenced by the availability of nitrogen. While favored nitrogen sources such as glutamine and ammonium are used preferentially, the uptake and utilization of nitrate is subject to a regulatory mechanism called nitrogen metabolite repression (NMR). In Aspergillus nidulans, the transcriptiona...

متن کامل

A paradoxical mutant GATA factor.

The niiA (nitrite reductase) and niaD (nitrate reductase) genes of Aspergillus nidulans are subject to both induction by nitrate and repression by ammonium or glutamine. The intergenic region between these genes functions as a bidirectional promoter. In this region, nucleosomes are positioned under nonexpression conditions. On nitrate induction under derepressing conditions, total loss of posit...

متن کامل

The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter.

The linked niiA and niaD genes of Aspergillus nidulans are transcribed divergently. The expression of these genes is subject to a dual control system. They are induced by nitrate and repressed by ammonium. AreA mediates derepression in the absence of ammonium and NirA supposedly mediates nitrate induction. Out of 10 GATA sites, a central cluster (sites 5-8) is responsible for approximately 80% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2007